Introducing Shear Stress in the Study of Bacterial Adhesion

نویسندگان

  • Magali Soyer
  • Guillaume Duménil
چکیده

During bacterial infections a sequence of interactions occur between the pathogen and its host. Bacterial adhesion to the host cell surface is often the initial and determining step of the pathogenesis. Although experimentally adhesion is mostly studied in static conditions adhesion actually takes place in the presence of flowing liquid. First encounters between bacteria and their host often occur at the mucosal level, mouth, lung, gut, eye, etc. where mucus flows along the surface of epithelial cells. Later in infection, pathogens occasionally access the blood circulation causing life-threatening illnesses such as septicemia, sepsis and meningitis. A defining feature of these infections is the ability of these pathogens to interact with endothelial cells in presence of circulating blood. The presence of flowing liquid, mucus or blood for instance, determines adhesion because it generates a mechanical force on the pathogen. To characterize the effect of flowing liquid one usually refers to the notion of shear stress, which is the tangential force exerted per unit area by a fluid moving near a stationary wall, expressed in dynes/cm(2). Intensities of shear stress vary widely according to the different vessels type, size, organ, location etc. (0-100 dynes/cm(2)). Circulation in capillaries can reach very low shear stress values and even temporarily stop during periods ranging between a few seconds to several minutes (1). On the other end of the spectrum shear stress in arterioles can reach 100 dynes/cm(2)(2). The impact of shear stress on different biological processes has been clearly demonstrated as for instance during the interaction of leukocytes with the endothelium (3). To take into account this mechanical parameter in the process of bacterial adhesion we took advantage of an experimental procedure based on the use of a disposable flow chamber (4). Host cells are grown in the flow chamber and fluorescent bacteria are introduced in the flow controlled by a syringe pump. We initially focused our investigations on the bacterial pathogen Neisseria meningitidis, a Gram-negative bacterium responsible for septicemia and meningitis. The procedure described here allowed us to study the impact of shear stress on the ability of the bacteria to: adhere to cells (1), to proliferate on the cell surface (5)and to detach to colonize new sites (6) (Figure 1). Complementary technical information can be found in reference 7. Shear stress values presented here were chosen based on our previous experience(1) and to represent values found in the literature. The protocol should be applicable to a wide range of pathogens with specific adjustments depending on the objectives of the study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor

The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress-four values rangi...

متن کامل

In Vitro and In Vivo Model to Study Bacterial Adhesion to the Vessel Wall Under Flow Conditions

In order to cause endovascular infections and infective endocarditis, bacteria need to be able to adhere to the vessel wall while being exposed to the shear stress of flowing blood. To identify the bacterial and host factors that contribute to vascular adhesion of microorganisms, appropriate models that study these interactions under physiological shear conditions are needed. Here, we describe ...

متن کامل

The influence of shear stress on the adhesion capacity of Legionella pneumophila.

Bacterial adhesion is a complex process influenced by many factors, including hydrodynamic conditions. They affect the transfer of oxygen, nutrients, and bacterial cells in a water supply and cooling systems. The aim of this study was to identify hydrodynamic effects on bacterial adhesion to and detachment from stainless steel surfaces. For this purpose we observed the behaviour of bacterium L....

متن کامل

Boundary Shear Stress in a Trapezoidal Channel

This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear stress in smooth trapezoidal open channels are derived after using Guo & Julien (2005) early equations taking a part of an investigation to cover both rectangular and trapezoidal chann...

متن کامل

Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa.

Although ubiquitous, the processes by which bacteria colonize surfaces remain poorly understood. Here we report results for the influence of the wall shear stress on the early-stage adhesion of Pseudomonas aeruginosa PA14 on glass and polydimethylsiloxane surfaces. We use image analysis to measure the residence time of each adhering bacterium under flow. Our main finding is that, on either surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 203  شماره 

صفحات  -

تاریخ انتشار 2011